3.554 \(\int \frac{1}{(a+a \sin (e+f x))^{3/2} (c+d \sin (e+f x))} \, dx\)

Optimal. Leaf size=164 \[ -\frac{2 d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \cos (e+f x)}{\sqrt{c+d} \sqrt{a \sin (e+f x)+a}}\right )}{a^{3/2} f (c-d)^2 \sqrt{c+d}}-\frac{(c-5 d) \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{2} \sqrt{a \sin (e+f x)+a}}\right )}{2 \sqrt{2} a^{3/2} f (c-d)^2}-\frac{\cos (e+f x)}{2 f (c-d) (a \sin (e+f x)+a)^{3/2}} \]

[Out]

-((c - 5*d)*ArcTanh[(Sqrt[a]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]])])/(2*Sqrt[2]*a^(3/2)*(c - d)^2*f
) - (2*d^(3/2)*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x]])])/(a^(3/2)*(c - d
)^2*Sqrt[c + d]*f) - Cos[e + f*x]/(2*(c - d)*f*(a + a*Sin[e + f*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.416588, antiderivative size = 164, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {2766, 2985, 2649, 206, 2773, 208} \[ -\frac{2 d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \cos (e+f x)}{\sqrt{c+d} \sqrt{a \sin (e+f x)+a}}\right )}{a^{3/2} f (c-d)^2 \sqrt{c+d}}-\frac{(c-5 d) \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{2} \sqrt{a \sin (e+f x)+a}}\right )}{2 \sqrt{2} a^{3/2} f (c-d)^2}-\frac{\cos (e+f x)}{2 f (c-d) (a \sin (e+f x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + a*Sin[e + f*x])^(3/2)*(c + d*Sin[e + f*x])),x]

[Out]

-((c - 5*d)*ArcTanh[(Sqrt[a]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]])])/(2*Sqrt[2]*a^(3/2)*(c - d)^2*f
) - (2*d^(3/2)*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x]])])/(a^(3/2)*(c - d
)^2*Sqrt[c + d]*f) - Cos[e + f*x]/(2*(c - d)*f*(a + a*Sin[e + f*x])^(3/2))

Rule 2766

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dis
t[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d*
(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (IntegerQ
[m] && EqQ[c, 0]))

Rule 2985

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{(a+a \sin (e+f x))^{3/2} (c+d \sin (e+f x))} \, dx &=-\frac{\cos (e+f x)}{2 (c-d) f (a+a \sin (e+f x))^{3/2}}-\frac{\int \frac{-\frac{1}{2} a (c-4 d)-\frac{1}{2} a d \sin (e+f x)}{\sqrt{a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx}{2 a^2 (c-d)}\\ &=-\frac{\cos (e+f x)}{2 (c-d) f (a+a \sin (e+f x))^{3/2}}+\frac{(c-5 d) \int \frac{1}{\sqrt{a+a \sin (e+f x)}} \, dx}{4 a (c-d)^2}+\frac{d^2 \int \frac{\sqrt{a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx}{a^2 (c-d)^2}\\ &=-\frac{\cos (e+f x)}{2 (c-d) f (a+a \sin (e+f x))^{3/2}}-\frac{(c-5 d) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\frac{a \cos (e+f x)}{\sqrt{a+a \sin (e+f x)}}\right )}{2 a (c-d)^2 f}-\frac{\left (2 d^2\right ) \operatorname{Subst}\left (\int \frac{1}{a c+a d-d x^2} \, dx,x,\frac{a \cos (e+f x)}{\sqrt{a+a \sin (e+f x)}}\right )}{a (c-d)^2 f}\\ &=-\frac{(c-5 d) \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{2} \sqrt{a+a \sin (e+f x)}}\right )}{2 \sqrt{2} a^{3/2} (c-d)^2 f}-\frac{2 d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \cos (e+f x)}{\sqrt{c+d} \sqrt{a+a \sin (e+f x)}}\right )}{a^{3/2} (c-d)^2 \sqrt{c+d} f}-\frac{\cos (e+f x)}{2 (c-d) f (a+a \sin (e+f x))^{3/2}}\\ \end{align*}

Mathematica [C]  time = 1.78281, size = 385, normalized size = 2.35 \[ \frac{\left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right ) \left (-\frac{d^{3/2} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^2 \left (2 \log \left (\sec ^2\left (\frac{1}{4} (e+f x)\right ) \left (\sqrt{c+d}-\sqrt{d} \sin \left (\frac{1}{2} (e+f x)\right )+\sqrt{d} \cos \left (\frac{1}{2} (e+f x)\right )\right )\right )-2 \log \left (\sec ^2\left (\frac{1}{4} (e+f x)\right )\right )+e+f x\right )}{\sqrt{c+d}}+\frac{d^{3/2} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^2 \left (2 \log \left (\sec ^2\left (\frac{1}{4} (e+f x)\right ) \left (\sqrt{c+d}+\sqrt{d} \sin \left (\frac{1}{2} (e+f x)\right )-\sqrt{d} \cos \left (\frac{1}{2} (e+f x)\right )\right )\right )-2 \log \left (\sec ^2\left (\frac{1}{4} (e+f x)\right )\right )+e+f x\right )}{\sqrt{c+d}}+2 (c-d) \sin \left (\frac{1}{2} (e+f x)\right )-(c-d) \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )+(1+i) (-1)^{3/4} (c-5 d) \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^2 \tanh ^{-1}\left (\left (\frac{1}{2}+\frac{i}{2}\right ) (-1)^{3/4} \left (\tan \left (\frac{1}{4} (e+f x)\right )-1\right )\right )\right )}{2 f (c-d)^2 (a (\sin (e+f x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + a*Sin[e + f*x])^(3/2)*(c + d*Sin[e + f*x])),x]

[Out]

((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(2*(c - d)*Sin[(e + f*x)/2] - (c - d)*(Cos[(e + f*x)/2] + Sin[(e + f*x)
/2]) + (1 + I)*(-1)^(3/4)*(c - 5*d)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(e + f*x)/4])]*(Cos[(e + f*x)/2]
+ Sin[(e + f*x)/2])^2 - (d^(3/2)*(e + f*x - 2*Log[Sec[(e + f*x)/4]^2] + 2*Log[Sec[(e + f*x)/4]^2*(Sqrt[c + d]
+ Sqrt[d]*Cos[(e + f*x)/2] - Sqrt[d]*Sin[(e + f*x)/2])])*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2)/Sqrt[c + d]
+ (d^(3/2)*(e + f*x - 2*Log[Sec[(e + f*x)/4]^2] + 2*Log[Sec[(e + f*x)/4]^2*(Sqrt[c + d] - Sqrt[d]*Cos[(e + f*x
)/2] + Sqrt[d]*Sin[(e + f*x)/2])])*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2)/Sqrt[c + d]))/(2*(c - d)^2*f*(a*(1
 + Sin[e + f*x]))^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.836, size = 338, normalized size = 2.1 \begin{align*} -{\frac{1}{4\, \left ( c-d \right ) ^{2}\cos \left ( fx+e \right ) f} \left ( \sin \left ( fx+e \right ) \left ( 8\,{d}^{2}{\it Artanh} \left ({\frac{\sqrt{a-a\sin \left ( fx+e \right ) }d}{\sqrt{acd+a{d}^{2}}}} \right ){a}^{3/2}+\sqrt{a \left ( c+d \right ) d}\sqrt{2}{\it Artanh} \left ({\frac{\sqrt{2}}{2}\sqrt{a-a\sin \left ( fx+e \right ) }{\frac{1}{\sqrt{a}}}} \right ) ac-5\,\sqrt{a \left ( c+d \right ) d}\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{a-a\sin \left ( fx+e \right ) }\sqrt{2}}{\sqrt{a}}} \right ) ad \right ) +8\,{d}^{2}{\it Artanh} \left ({\frac{\sqrt{a-a\sin \left ( fx+e \right ) }d}{\sqrt{acd+a{d}^{2}}}} \right ){a}^{3/2}+\sqrt{a \left ( c+d \right ) d}\sqrt{2}{\it Artanh} \left ({\frac{\sqrt{2}}{2}\sqrt{a-a\sin \left ( fx+e \right ) }{\frac{1}{\sqrt{a}}}} \right ) ac-5\,\sqrt{a \left ( c+d \right ) d}\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{a-a\sin \left ( fx+e \right ) }\sqrt{2}}{\sqrt{a}}} \right ) ad+2\,\sqrt{a \left ( c+d \right ) d}\sqrt{a-a\sin \left ( fx+e \right ) }\sqrt{a}c-2\,\sqrt{a \left ( c+d \right ) d}\sqrt{a-a\sin \left ( fx+e \right ) }\sqrt{a}d \right ) \sqrt{-a \left ( -1+\sin \left ( fx+e \right ) \right ) }{a}^{-{\frac{5}{2}}}{\frac{1}{\sqrt{a \left ( c+d \right ) d}}}{\frac{1}{\sqrt{a+a\sin \left ( fx+e \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e)),x)

[Out]

-1/4/a^(5/2)*(sin(f*x+e)*(8*d^2*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*a^(3/2)+(a*(c+d)*d)^(1/2
)*2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*a*c-5*(a*(c+d)*d)^(1/2)*2^(1/2)*arctanh(1/2*(a-a
*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*a*d)+8*d^2*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*a^(3/2)+(
a*(c+d)*d)^(1/2)*2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*a*c-5*(a*(c+d)*d)^(1/2)*2^(1/2)*a
rctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*a*d+2*(a*(c+d)*d)^(1/2)*(a-a*sin(f*x+e))^(1/2)*a^(1/2)*c-2*
(a*(c+d)*d)^(1/2)*(a-a*sin(f*x+e))^(1/2)*a^(1/2)*d)*(-a*(-1+sin(f*x+e)))^(1/2)/(a*(c+d)*d)^(1/2)/(c-d)^2/cos(f
*x+e)/(a+a*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{3}{2}}{\left (d \sin \left (f x + e\right ) + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate(1/((a*sin(f*x + e) + a)^(3/2)*(d*sin(f*x + e) + c)), x)

________________________________________________________________________________________

Fricas [B]  time = 3.96197, size = 3133, normalized size = 19.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e)),x, algorithm="fricas")

[Out]

[-1/8*(sqrt(2)*((c - 5*d)*cos(f*x + e)^2 - (c - 5*d)*cos(f*x + e) - ((c - 5*d)*cos(f*x + e) + 2*c - 10*d)*sin(
f*x + e) - 2*c + 10*d)*sqrt(a)*log(-(a*cos(f*x + e)^2 + 2*sqrt(2)*sqrt(a*sin(f*x + e) + a)*sqrt(a)*(cos(f*x +
e) - sin(f*x + e) + 1) + 3*a*cos(f*x + e) - (a*cos(f*x + e) - 2*a)*sin(f*x + e) + 2*a)/(cos(f*x + e)^2 - (cos(
f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2)) - 4*(a*d*cos(f*x + e)^2 - a*d*cos(f*x + e) - 2*a*d - (a*d*cos(
f*x + e) + 2*a*d)*sin(f*x + e))*sqrt(d/(a*c + a*d))*log((d^2*cos(f*x + e)^3 - (6*c*d + 7*d^2)*cos(f*x + e)^2 -
 c^2 - 2*c*d - d^2 - 4*((c*d + d^2)*cos(f*x + e)^2 - c^2 - 4*c*d - 3*d^2 - (c^2 + 3*c*d + 2*d^2)*cos(f*x + e)
+ (c^2 + 4*c*d + 3*d^2 + (c*d + d^2)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(d/(a*c + a*d))
- (c^2 + 8*c*d + 9*d^2)*cos(f*x + e) + (d^2*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 + 2*(3*c*d + 4*d^2)*cos(f*x + e
))*sin(f*x + e))/(d^2*cos(f*x + e)^3 + (2*c*d + d^2)*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 - (c^2 + d^2)*cos(f*x
+ e) + (d^2*cos(f*x + e)^2 - 2*c*d*cos(f*x + e) - c^2 - 2*c*d - d^2)*sin(f*x + e))) - 4*((c - d)*cos(f*x + e)
- (c - d)*sin(f*x + e) + c - d)*sqrt(a*sin(f*x + e) + a))/((a^2*c^2 - 2*a^2*c*d + a^2*d^2)*f*cos(f*x + e)^2 -
(a^2*c^2 - 2*a^2*c*d + a^2*d^2)*f*cos(f*x + e) - 2*(a^2*c^2 - 2*a^2*c*d + a^2*d^2)*f - ((a^2*c^2 - 2*a^2*c*d +
 a^2*d^2)*f*cos(f*x + e) + 2*(a^2*c^2 - 2*a^2*c*d + a^2*d^2)*f)*sin(f*x + e)), -1/8*(sqrt(2)*((c - 5*d)*cos(f*
x + e)^2 - (c - 5*d)*cos(f*x + e) - ((c - 5*d)*cos(f*x + e) + 2*c - 10*d)*sin(f*x + e) - 2*c + 10*d)*sqrt(a)*l
og(-(a*cos(f*x + e)^2 + 2*sqrt(2)*sqrt(a*sin(f*x + e) + a)*sqrt(a)*(cos(f*x + e) - sin(f*x + e) + 1) + 3*a*cos
(f*x + e) - (a*cos(f*x + e) - 2*a)*sin(f*x + e) + 2*a)/(cos(f*x + e)^2 - (cos(f*x + e) + 2)*sin(f*x + e) - cos
(f*x + e) - 2)) + 8*(a*d*cos(f*x + e)^2 - a*d*cos(f*x + e) - 2*a*d - (a*d*cos(f*x + e) + 2*a*d)*sin(f*x + e))*
sqrt(-d/(a*c + a*d))*arctan(1/2*sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e) - c - 2*d)*sqrt(-d/(a*c + a*d))/(d*co
s(f*x + e))) - 4*((c - d)*cos(f*x + e) - (c - d)*sin(f*x + e) + c - d)*sqrt(a*sin(f*x + e) + a))/((a^2*c^2 - 2
*a^2*c*d + a^2*d^2)*f*cos(f*x + e)^2 - (a^2*c^2 - 2*a^2*c*d + a^2*d^2)*f*cos(f*x + e) - 2*(a^2*c^2 - 2*a^2*c*d
 + a^2*d^2)*f - ((a^2*c^2 - 2*a^2*c*d + a^2*d^2)*f*cos(f*x + e) + 2*(a^2*c^2 - 2*a^2*c*d + a^2*d^2)*f)*sin(f*x
 + e))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))**(3/2)/(c+d*sin(f*x+e)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e)),x, algorithm="giac")

[Out]

Exception raised: TypeError